Dual energy CT-based characterization of x-ray attenuation properties of breast equivalent material plates
نویسندگان
چکیده
Breast density is more and more considered as an important risk factor for breast cancer and several quantitative breast density evaluation methods have been proposed. The reference material for simulation of the breast attenuation properties of glandular and adipose breast tissues is manufactured by a single provider. In order to characterize the attenuation properties of these materials, measurements in Hounsfield Units (HU) have been performed using a CT-scanner. Breastequivalent plates have been imaged in different configurations (plates in and orthogonal to image planes), providing consistent results (+ 1.3 HU). Breast density equivalent plates of different nominal breast density equivalences and sizes were measured, demonstrating both a good homogeneity within the plates (+ 1.8 HU) and a good consistency between plates of the same nominal breast density equivalence (+ 1.5 HU). In addition, dual energy CT provided mono-energetic HU from which mono-energetic linear attenuation coefficients of water and glandular and adipose equivalent materials were computed. The values for these coefficients were found in good agreement with results from literature, respectively direct mono-energetic measurements of breast samples, and computation by combining published breast tissue atomic compositions and linear attenuation coefficient tables. In conclusion, CT was found effective for the verification of the breast equivalent material, and the homogeneity and consistency of the plates were found satisfactory. Furthermore, the most recent spectral CT technology allowed demonstrating a good agreement of the attenuation properties of breastequivalent material plates with state-of-the-art knowledge of real breast tissue attenuation.
منابع مشابه
بررسی امکان تشخیص اتوماتیک میکروکلسیم های بافت پستان با استفاده از تکنیک دو انرژی تصویربرداری اشعه ایکس جهت تشخیص زودرس سرطان پستان
Background and purpose: Dual-energy mammography technique is used for improving the accuracy of breast cancer diagnosis especially in dense breast cases and also detection of micro-calcifications which are early signs of breast cancer. The purpose of this study was to investigate the automatic separation feasibility of micro-calcification images in breast tissue images and evaluating its accura...
متن کاملAn iterative method to estimate x-ray attenuation coefficients in computed tomography
Introduction: The basis of image formation in Computed Tomography (CT) lies in the x-ray linear attenuation coefficient of the scanned material. Compton scattering and photoelectric effect are the dominant interactions of the x-ray photons with the subject, in the range of diagnostic radiology. These two coefficients are important in tissue characterization by Dual-Energy CT (D...
متن کاملA novel dual energy CT-based attenuation correction method in PET/CT systems: A phantom study
In present PET/CT scanners, PET attenuation correction is performed by relying on the information given by CT scan. In the CT-based attenuation correction methods, dual-energy technique (DECT) is the most accurate approach, which has been limited due to the increasing patient dose. In this feasibility study, we have introduced a new method that can implement dual-en...
متن کاملDevelopment and Characterization of Synthetic Tissue- Equivalent Material for CT Imaging Applications
Introduction: The use of a simple tissue analog material in the fabrication of medical computed tomography (CT) imaging phantoms has great potential to help researchers. The purpose of the present study is to develop new gel tissue-equivalent materials and determine whether their CT numbers and relative electron densities vary in CT images obtained by scans at different energie...
متن کاملValidation of computed tomography-based attenuation correction of deviation between theoretical and actual values for four computed tomography scanners
Objective: In this study, we aimed to validate the accuracy of computed tomography-based attenuation correction (CTAC) using the bilinear scaling method.Methods: The measured attenuation coefficient (μm) was compared to a theoretical attenuation coefficient (μt ) using four different CT scanners and an RMI 467 phantom. The effective energy of the CT beam X-rays was calculated, using the aluminu...
متن کامل